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Shock emission from collapsing gas bubbles
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The origin and the resultant properties of the strong pulses or shocks emitted by
collapsing gas bubbles into a surrounding liquid are investigated numerically. The
compressible flow in both phases is resolved. Results are presented for micron- and
millimetre-sized bubbles and for bubble collapse triggered either by an acoustic driving
or by an initially imposed spherical shock in the liquid. The origin of the diverging
shocks is investigated, and the results of a parametric study for the acoustically driven
collapse reveal a predominant linear dependence of the shock strength and width on
the maximum bubble radius. The results compare favourably with experimental data
and agree well with acoustic theory in the limit of weak forcing.

1. Introduction
Freely suspended collapsing bubbles are well known to emit diverging shock waves

upon rebounding from minimum volume (Tomita & Shima 1986; Ward & Emmony
1992; Ohl et al. 1999; Pecha & Gompf 2000; Lauterborn et al. 2001). Predictions of the
strength of any emitted shocks are of interest in cavitation and medical applications,
for cases where bubbles collapse sufficiently far away from a wall, such that no liquid
jets form (typically 2–3 times the maximum bubble radius; cf. Tomita & Shima 1986).
Experimentally, initial values are hard to ascertain, as spatial practicalities mean that
measurements of any expanding shock are usually taken at a certain distance from
the bubble. To address this issue, we simulate the bubble collapse by using numerical
techniques, examining not only shock emission but also conditions inside the bubble.

Diverging shock waves have been measured experimentally by several groups
(Weninger, Barber & Putterman 1997; Matula et al. 1998; Pecha & Gompf 2000;
Lauterborn et al. 2001; Karng et al. 2003). The shock strength for laser-generated
bubbles is approximately linearly dependent on the maximum bubble radius (in the
mm range), whereas the full width at half maximum (FWHM) levels off at large values
of the maximum radius, above 2 mm (Lauterborn et al. 2001). The initial velocity
of the shock has been measured to be around 4000 m s−1 for a 10 μm radius bubble
(Pecha & Gompf 2000); Holzfuss, Rüggeberg & Billo (1998) found an averaged value
of 2000 m s−1 for a 5 μm radius bubble over a distance between 6 and 72 μm from
the bubble centre. At later times, the shock velocity approaches an almost constant
value of ∼1500 m s−1. The rate at which the shock strength decays, however, remains
unclear, with observations of a decay rate proportional to the inverse of the shock
radius (Karng et al. 2003) or faster (Pecha & Gompf 2000).
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Previous numerical studies of the diverging shock waves radiated by collapsing
bubbles have mainly used models where the compressible equations of motion for the
liquid are solved by invoking the Kirkwood–Bethe (KB) hypothesis. The motion of the
bubble surface is then tracked using a Rayleigh–Plesset-type equation (Gilmore 1952;
Hickling & Plesset 1964; Holzfuss et al. 1998; Karng et al. 2003) that incorporates the
effects of the bubble interior, i.e. the equations of motion are not directly simulated
within the bubble in conjunction with the KB hypothesis for the liquid flow (with
the exception of the work by Karng et al. 2003). Though successful in capturing the
formation of a diverging shock wave, the resultant predicted shock structure differs
from the experimental observation. Karng et al. (2003) found the FWHM to be off
by a factor of 6. It remains unclear whether this is caused by limitations in the
experimental method (Matula et al. 1998) or assumptions made in the model.

Here, instead, we solve the directly coupled compressible equations of motion
for both phases, negating the need for these assumptions. Most recent two-phase
compressible simulations consider the shock-impact-driven breakup of one or two
bubbles (e.g. Hu et al. 2006). Therein, the accurate simulation of the approach to
minimum volume, bubble rebound and the associated shock emission still remains
a computational challenge (cf. Nagrath et al. 2006; Johnsen & Colonius 2009).
An exception is the early work of Moss et al. (1994) who, although resolving the
compressible flow in the liquid, studied mainly the flow inside spherically collapsing
bubbles (albeit employing artificial viscosity to stabilize the numerical method and
splitting the simulations into two stages), rather than shock waves radiated by
collapsing bubbles.

To address this, we present results of a number of simulations of spherically
collapsing bubbles and subsequent shock emission. For millimetre-sized bubbles, this
would appear to be a good approximation (cf. Ward & Emmony 1992; Lauterborn
et al. 2001). For micron-sized bubbles (>5 μm), parametric instability (Holt & Gaitan
1996; Brenner, Hilgenfeldt & Lohse 2002) is important, especially for acoustically
driven bubbles, but grows during the expansion phase of the afterbounces and thus
spherical symmetry should still be a good approximation during the initial collapse.
Rayleigh–Taylor (RT) instability may lead to severe distortion of collapsed vapour
bubbles after rebound from minimum volume (Brennen 2002); it is unclear at present
whether a diverging shock in water is unstable to non-spherical disturbances, as
previous work is primarily on converging shocks in ideal or van der Waals gases (cf.
Evans 1996). Even in such cases, however, it is important to have benchmark results for
spherically symmetric collapse when attempting three-dimensional simulations (which
have the added difficulty that shape modes may result from the discretization used),
in order to assess the significance of shape modes on the acoustic emission. If present,
we expect a non-strictly spherical collapse to give rise to slightly weaker emissions.
We briefly investigate the significance of the RT shape mode instability in § 5.

2. Problem set-up and numerical method
We introduce the spherical symmetric polar coordinate system x = rr̂ measured

with respect to the bubble centre. In each phase, the respective fluids are modelled by
the spherically symmetric compressible Euler equations in quasi-conservative form

∂ Z
∂t

+
∂ F̂(Z)

∂r
= S(Z), Z = r2(ρ, ρw, E)T, F̂(Z) = r2(ρw, ρw2 + p, w[E + p])T,

(2.1)
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Figure 1. Convergence study: bubble radius vs. time (a) upon impact of a converging spherical
shock wave (P0 = 10 MPa; Ri =10 μm, R0 = 3Ri , R1 = 5Ri), and (b) an acoustically driven
bubble (ω = 5 × 105 rad s−1, pa = 4 bar, Ri =10 μm, R1 = 320 μm). In (a), N = 1251 (short-
dashed line), 2501 (dash-dotted line), 5001 (dash-dot-dotted line), 10 001 (solid line). The
dotted line in (a) represents a fit of a Rayleigh–Plesset equation. In (b), results are shown
(from bottom to top, i.e. from left to right in the inset) for N = 8001, 16 001 and 32 001.

where S(Z) = (0, 2rp, 0)T, t denotes time, ρ denotes density, p denotes pressure, w

denotes the radial velocity and the total energy per unit volume E = ρe + 1/2ρw2, e

representing the internal energy per unit volume. The effects of viscosity are expected
to be small in the strongly forced cases studied here: an upper estimate of the
viscous contributions to the pressure in the gas is μL|Ṙ|max/Rmin, where μL denotes
the dynamic viscosity of water, Rmin is the minimum bubble radius and Ṙmax is the
maximum velocity of the bubble surface. For the conditions shown in figure 1(a)
(which is discussed in detail at the end of this section), μL = 10−3 Pa s, Rmin ∼ 10−7

m and |Ṙ|max ∼ 103 m s−1, which would result in a pressure contribution of O(106)Pa,
whereas at minimum volume the pressure is of O(1010)Pa.

The water surrounding the bubble is modelled by the Tait equation of state, where
the ratio of specific heats, γ = 7.15. For most of the simulations, the ideal gas equation
is employed for the bubble interior, where p = (γ − 1)ρe. For the acoustic driving
case, we have conducted additional simulations using a virial equation of state,
p = ρRT (1 + Vcρ/(3M)) − 3pcV

2
c ρ2/M2, where T denotes temperature, M denotes

molecular mass, R denotes specific gas constant, Vc denotes the molar volume at
the critical point and pc denotes the pressure at the critical point, but no significant
impact on the results was seen. We have also represented the effects of a constant
vapour pressure within the bubble in additional tests, which only caused a smaller
decrease in temperature during the expansion stage. The effect of evaporation is
further considered at the end of § 3.

In cases where heat conduction is retained, the source term is modified to
S(Z) = (0, 2rp, (∂/∂r)[r2Λ(Θ)(∂Θ/∂r)])T, where Θ denotes temperature and Λ is the
respective fluid’s thermal conductivity. Appropriate temperature updates are obtained
following Vuong & Szeri (1996).

Equation (2.1) is solved numerically. First, the method of lines is employed to
separate the spatial and temporal derivatives. An upwind scheme in characteristic
space is used for the spatial fluxes, while the equations are evolved temporally with
a third order total variational diminishing Runge–Kutta scheme. The interface is
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advected temporally using the appropriately interpolated velocity value. Accurate
(and sharp) boundary conditions are imposed at this interface by employing the
modified form of the ghost fluid method (Fedkiw 2002) together with the isobaric
fix technique (Fedkiw, Marquina & Merriman 1999). A uniform mesh of N grid
points is used. Thermal conduction is not accounted for unless stated otherwise;
when it is considered, the additional source term is evaluated at each time step using
a second-order central difference.

A bubble of initial radius Ri (under room temperature conditions) is forced into
collapse by two alternative approaches. In the first approach, the bubble is exposed to
an incoming spherical shock wave of strength P0, which at t = 0 is located at r = R0.
An outflow condition is used as the outer boundary condition in this case. In the
second approach, a sinusoidal acoustic forcing is imposed through an inlet condition at
the outer boundary of the computation domain (denoted henceforth by r = R1) with a
pressure value patm −pasin(ωt), where patm denotes the background ambient pressure,
pa denotes the forcing amplitude and ω denotes the driving (angular) frequency.
Therefore, any signal radiated from the bubble that reaches the outer boundary of
the computational domain is reflected in the acoustically driven collapse case, but not
in the shock-driven collapse. Tests on a computational domain of half the size, for
the acoustically driven collapse, reveal no visible difference with figure 4 (the value of
Rmax changed marginally, but the FWHM and shock strength changed accordingly),
showing that the present findings are robust. We also note that, if in the acoustically
driven collapse case the pressure in a flask is modelled by pampsin(kr/Rf )/r , where
k ≈ 7.725 (a root of k − tank), then pamp = kpa . Symmetry conditions are imposed at
r = 0 in all cases.

For the shock-driven collapse, a self-similar solution predicts that the temperature
and pressure become singular at the convergence point of the transmitted shock (cf.
Brenner et al. 2002). Our grid refinement studies without conduction confirm this (and
good agreement is found with the self-similar solution): a finer grid results in larger
peak values (although this affects only a small region around the bubble centre).
Conduction is expected to regularize this behaviour (Vuong & Szeri 1996; Vuong,
Szeri & Young 1999). Tests show that although the conditions inside the bubble are
affected by conduction, no effect is found here on the emission of the diverging shocks
in the liquid, which is the main subject of this paper. For simplicity, we therefore omit
conduction in § 3 and provide the test results on the effect of conduction in § 4.

In figure 1, results of a convergence study are presented for the temporal evolution
of the bubble radius and an example of each type of induced collapse. Inside the
bubble, γ = 1.4. In both cases, the results would indicate convergence upon grid
refinement. The results in figure 1(b) have been truncated at the point that the
diverging shock, once reflected from r = R1, has reached the bubble surface again,
since the resultant bubble dynamics are effected by this reflection. In figure 1(a), it
can be seen that the results can be well represented by curve-fitting a solution of the
Rayleigh–Plesset equation.

3. Overview of flow behaviour
The emission of diverging waves was found to be qualitatively similar for shock-

and acoustically driven collapse. In figure 2, the structure of the emitted pulse or
shock is shown for an acoustically driven collapse with patm = 1 bar, ω = 5 × 105 rad
s−1, Ri =10 μm, R1 = 320 μm, for two values of the driving pressure amplitude pa .
At relatively low values of pa (less than 1.5 bar), no pulse or shock is emitted (not
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Figure 2. Structure of a diverging shock wave (a, c) and the temperature at the bubble centre,
together with the bubble radius vs. time (b, d ) for an acoustically driven bubble collapse.
Driving pressure amplitudes of 1.5 bar (a, b) and 4 bar (c, d ), imposed at r = 160 μm and for
a bubble of initial radius of 10 μm, are used. In (a, c), the pressure is shown at four locations
in the liquid, at (from left to right in each panel) r = 25, 50, 100 and 150 μm.
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Figure 3. Same as in figure 2(c, d ) but for γ = 5/3.

shown). For pa =1.5 bar (figure 2a), a pulse is emitted, not a shock. It can be inferred
from figure 2(b) that the conditions inside the bubble are fairly uniform in this case;
the temperature at the bubble centre gradually increases to a peak value at minimum
volume and then monotonically decays as the bubble re-expands. For pa = 4 bar
(figure 2c), a strong diverging shock wave in the water is observed, as well as the
formation of a shock inside the bubble just before minimum volume when conduction
is neglected. The extreme temperatures and pressures predicted inside the bubble in
this case are unlikely to be observed in experiment and not only because of the effects
of conduction. For instance, strongly forced bubbles eventually consist of pure argon
(Lohse et al. 1997), resulting in a higher value of the ratio of specific heats, γ . In
figure 3, we see for the same conditions as in figure 2(c, d ), but for γ =5/3, no shock
is formed inside the bubble, yet a strong diverging shock in the liquid is observed. So,
although it seems remarkable that for air–water systems the formation of a clear-cut
shock structure (instead of a mere pulse) in the liquid almost coincides with the
formation of a shock inside the bubble for the conditions studied here, and neglecting
conduction, for noble gas bubbles, a strong diverging shock is observed even if the
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Figure 4. The maximum pressure value (a, b) and pulse width FWHM (c, d ) in the diverging
pulse/shock obtained from different values of pa for acoustically driven collapse, as a function
of the maximum radius of the bubble during the acoustic cycle. In (a) and (c), Ri = 10 μm,
R1 = 160 μm, ω = 5 × 105 s−1 and 1.5 bar � pa � 5 bar; the symbols are simulation results and
the dashed lines represent the corresponding prediction from acoustic theory explained in the
main text. In (b) and (d ), Ri = 0.1 mm, R1 = 3.2 mm, ω =5 × 104 s−1 and 2 bar � pa � 15 bar.
Initial conditions are atmospheric. The pressure values were measured at r = 25 (�), 50 (�),
100 (�) and 150 μm (�) in (a, c) and at r = 0.5 (�), 1(�), 2 (�) and 3 mm (�) in (b, d ).

conditions inside the bubble are fairly uniform. We have also verified that the type
of regime shown in figure 2(c, d ) can be approached for lower driving pressures if the
gas has a lower γ value (e.g. by setting pa =2 bar and γ = 1.1). The exact sequence
of events is further studied in § 4.

The dependency of the pulse/shock peak pressure value and pulse width FWHM
for the acoustically driven collapse on the value of the driving pressure amplitude pa

is summarized in figure 4 for relatively small and large bubbles, at different positions
in the liquid. In figure 4(a, b), comparisons are also made with the predictions of a
simple source in the acoustic limit (Lighthill 1979), �p = ρld

2R3/dt2/(3r), where the
derivative is evaluated at minimum volume (where Ṙ = 0), giving �p = ρlR

2R̈/r; R

and R̈ at minimum volume were obtained by fitting a quadratic function to R(t)
around minimum volume, hence the presence of some uncertainty in the theoretical
prediction in figure 4. In the vicinity of the bubble, agreement is excellent over the
entire range of acoustic forcing studied here, but a substantial overprediction of the
emitted shock strength is seen for strong forcing, at large distances from the bubble.
From figure 2(c, d ) we infer that this stronger decay of the shock waves is accompanied
by a broadening in the pulses as they propagate radially outwards (the very rapid
change in the FWHM for weak pulses is because of the half-width in these cases
being taken at pressure values close to the ambient conditions around the pulse). On a
linear scale, for the regimes shown in figure 2(a, d ), the dependency on the maximum
radius is approximately linear. For stronger forcing (figure 2c, d ), there is a departure
from this linear relation. The pulse width is seen in figure 4(c) to be only weakly
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dependent on Rmax for sufficiently strong forcing when measured near the collapsing
bubble, but to increase approximately linearly for larger values. The results for a
larger bubble (figure 4b, d ) are seen to be qualitatively similar, with the exception of
the FWHM, which levels off at large Rmax near the bubble. The minimum value of
Rmax for pulse emission has increased approximately by the same factor as the initial
bubble radius (i.e. a factor of ten). Although a quantitative comparison with the
corresponding experimental data of Lauterborn et al. (2001) is not possible, as those
authors studied laser-generated bubbles, it is encouraging to see that the measured
shock strength and the FWHM are of the same order as in the experiments. A
close inspection of figure 4(b) reveals that the pulse strength measured at r = 3 mm
by an acoustically driven bubble that reaches a maximum radius of Rmax = 1 mm
(2 mm) is approximately 130 bar (460 bar). Lauterborn et al. (2001) measured at
these values of Rmax , for laser-induced bubbles, values of approximately 80 and 160
bars, respectively. The comparison of the FWHM yields similar results: 95 ns (135 ns)
in the simulations versus 65 ns (100 ns). In the experiments, the FWHM shows a
linear increase with Rmax for 0.5 mm � Rmax � 2 mm, 45 ns � FWHM � 100 ns, and
a subsequent saturation, similar to that in the simulations relatively close to the
collapsing bubble in figure 4(d ).

Although evaporation is the subject of our future work, the present method can
be used to estimate its effect on the observed properties of emitted shocks presented
above, by using a larger initial bubble mass. The simulations of Matula et al. (2002),
although they do not account for shock emission, suggest a strong increase in the
mass of the bubble during the expansion stage of an initial acoustic cycle. This
mass increase would appear to subsequently affect only the bubble dynamics from
the collapse stage onwards. In particular, larger afterbounces are predicted but no
further significant increase in bubble mass is anticipated. A simple representation of
this therefore is to use a larger initial bubble mass in the present simulations. This
was found to lead to similar results for the temporal evolution of the bubble radius
as observed by Matula et al. (2002), but with the added benefit of still capturing the
emitted shock. The results show that an increase in the initial gas density leads to
a gradual reduction in the emitted shock strength (by a factor of 2 upon reaching
the density of water) and an increase in the FWHM (similarly by a factor of 2 or 3,
depending on the radial location of the measurement).

4. Formation of diverging shocks
Having investigated the overall flow behaviour in the previous section, we focus

here on identifying the sequence of events that lead to the formation of diverging
shocks. Since in both the acoustically driven and shock-driven collapses the formation
is similar, we concentrate on the latter in this section, for ease of computation and to
increase the range of cases considered. We consider primarily the collapse of an air
bubble in water with Ri = 10 μm, P0 = 100 bar and R1 = 50 μm. In terms of the results
of § 3, this is found to correspond to conditions inside the bubble near minimum
volume similar to those in figure 2(b), whereas the shock emitted by the bubble
is rather sharp as in figure 2(c). Thermal conduction is accounted for here unless
indicated otherwise; the conductivities in the gas and liquid are 0.025(Θ/300)0.5 and
0.6 Wm−1 K−1, respectively.

The sequence of events is shown in figure 5 and in the supplementary movie in terms
of pressure profiles. Figure 5 focuses on a part of the computational domain near the
bubble centre. In figure 5(a), the initially transmitted shock is seen to be smoothed by
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the approach to minimum volume (a–c) and the shock formation from nonlinear steepening
rather than a reflection from r = 0 (d ). In (b–d ), the dashed line indicates the bubble radius;
the dash-dotted line in (d ) represents 1/r .

conduction (the corresponding zero conduction simulation shows a sharp shock at this
stage) and to reflect from r = 0. Although the resulting reflected shock diverges from
the bubble centre through the gas, concurrently the pressure is increasing substantially
within the collapsing bubble because of the increased compression, thereby making
this reflected shock seem less significant. Subsequent panels were found to be virtually
identical with and without conduction. In figure 5(b), a pulse has partially reflected
from the bubble surface, and this reflection converges back to r =0 where it is
reflected from the origin again as can be seen in the final snapshot in figure 5(b).
(Note, the pressure profiles at subsequent times correspond to those from bottom to
the top of the graph.) The collapsing bubble surface is seen to enter the graph on
the right at later times. In figure 5(c), the newly reflected pulse propagates radially
outwards, but seems to play only a minor role in subsequent events. Instead, the
dynamics would now appear to be dominated by the continued compression of the
bubble contents during the final stages of collapse. Ultimately, the pressure build-up
within the bubble is sufficient to reverse the flow initiated by the original shock
impact upon the bubble. When this occurs, a large-amplitude pulse/shock is seen to
form in figure 5(d ). Figure 5(d ) shows the amplitude of the diverging shock decreases
approximately as the inverse of the radial coordinate of the shock in this case.

In figure 6(a), the radial location of the maximum pressure in the liquid RL
m is

shown together with the bubble radius R versus time. Conduction was found to have
no visible effect on these results, except for a minor difference in the conditions at
the bubble centre; cf. figure 6(c). The effect of the inclusion of heat transfer on the
dynamics inside a bubble is further discussed by Lin, Storey & Szeri (2002). At later
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times, RL
m corresponds to the location of the large-amplitude diverging shock in the

liquid emitted by the collapsed bubble. This shock location seems to follow naturally
from the maximum pressure before minimum volume is reached. Also shown there is
the location of the global maximum (the dashed line). After a brief peak at r = 0 near
t = 58 ns, which corresponds to the collapse of the initially transmitted shock (see
figure 5a), we see that near minimum volume the maximum pressure is in the gas,
but not necessarily at r = 0. No shocks are observed during this small time period,
but the radial location of the maximum pressure is eventually seen to jump towards
the bubble surface into the liquid and it is this signal that turns into the diverging
shock in the liquid at later times (figure 5d ).

Finally, we investigate the origin of the shock itself from an emitted pulse. We first
note that a close inspection of figure 5(d ) shows that the emitted pulse is initially
double-peaked. This can be seen in the last curve in figure 5(c); one peak results from
the maximum pressure at r = 0, the second to a point in the liquid beyond (behind)
which the liquid is moving radially inwards (outwards). In separate numerical work
by us, we have found that using the Kirkwood–Bethe hypothesis as summarized by
Knapp, Daily & Hammitt (1970) gives a similar initial structure. In this approximate
work (not shown here), the double peaks are more pronounced, however, and each
develops into separate shocks: one from the meeting of characteristics that originated
from the bubble surface before, and one from after, the instance of minimum volume.
Subsequently, in figure 5(d ), it can be seen that these two peaks merge in the full
simulations. This leads to an abrupt deceleration of the pressure pulse, as can be seen
in figure 6(b) at 50 ns after minimum volume. Finally, a shock structure results. The
shock speed is seen in figure 6(b) to peak at around 5 km s−1, which is similar to
values inferred from experiments (see Pecha & Gompf 2000). We have found that this
corresponds approximately to the local speed of sound in the liquid (incidentally, the
maximum value of the local Mach number based on the instantaneous, local speed
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of sound in the liquid during this simulation is around 0.3). Finally, the rate at which
the shock speed approaches the sound speed in undisturbed water is rather similar to
that measured by Pecha & Gompf (2000) for acoustically driven collapse.

5. Conclusions
Through numerical simulation we show that the strong pressure build-up in the

vicinity of the bubble surface during the later stages of bubble collapse develops into
a diverging shock (figure 5). The results establish that diverging shocks are not the
result of an earlier reflection of a converging shock from the bubble centre. Indeed,
for the strong acoustically driven collapse of air bubbles in water, the converging
and diverging shocks develop at approximately similar times for the cases studied.
The emitted shock strength and width are approximately linear in the maximum
radius of acoustically driven bubbles for relatively small and large bubbles. For
relatively weak pulses, the shock strength is well predicted by acoustic theory and
decays approximately as the inverse radial location of the shock. The strength of
relatively strong pulses is generally overpredicted by acoustic theory and decays faster
than 1/r . A comparison of the simulated shock strength and width with Lauterborn
et al. (2001)’s experimental measurements is encouraging, given that the simulations
are for acoustically driven collapse, whereas the experiments are for laser-generated
bubbles. The simulated propagation speed of the diverging shock is quite close to
that measured by Pecha & Gompf (2000). Initial tests show the potential of mass
transfer across the bubble surface to affect these results, and our future work aims to
incorporate this.

Finally, this work also provides benchmark data for axisymmetric and three-
dimensional two-phase compressible solvers. Shape deformation is the subject of
future work; integrating a simplified evolution equation for the leading order
shape mode, ä2 = R̈a2/R (using R(t) from the simulations), only predicts a five-
fold amplification of a2 from the minimum volume region to the first measurement
station of the diverging shock, used for figure 4(b). Consistent with the findings of
Prosperetti & Hao (1999) and Brenner et al. (2002) for the systems studied in this
paper, the RT instability mechanism may not be significant.
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